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An inverse scattering transform for the derivative nonlinear Schrödinger equation with nonvanishing bound-
ary conditions is derived by introducing an affine parameter to avoid constructing Riemann sheets. A one-
soliton solution simpler than that in the literature is obtained, which is a breather and degenerates to a bright
or dark soliton as the discrete eigenvalue becomes purely imaginary. The solution is mapped to that of the
modified nonlinear Schrödinger equation by a gaugelike transformation, predicting some sub-picosecond soli-
tons in optical fibers.
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I. INTRODUCTION

The derivative nonlinear Schrödinger(DNLS) equation

iut + uxx − imsuuu2udx = 0, s1d

where the subscripts denote partial derivatives andm= ±1,
has many physical applications, especially in space plasma
physics. It well describes small-amplitude nonlinear Alfvén
waves in a low-b (the ratio of kinetic to magnetic pressure)
plasma, propagating strictly parallel[1–3] or at a small angle
[4,5] to the ambient magnetic field. Recently it was shown
that the derivative nonlinear Schrödinger(DNLS) equation
also describes large-amplitude magnetohydrodynamic
(MHD) waves in a high-b plasma propagating in an arbitrary
angle to the ambient magnetic field[6]. Sinceu represents
the complex transverse magnetic field, generally these prob-
lems should be modeled with the nonvanishing boundary
conditions (NVBC, uuu →const asuxu →`). The vanishing
boundary conditions(VBC, u→0 as uxu →`) can only deal
with waves exactly parallel to the ambient field[4,5]. In
nonlinear optics, it is well known that the nonlinear
Schrödinger(NLS) equation well describes transmission of
picosecond pulses in optical fibers[7]. For femtosecond
pulse, it was suggested that the nonlinear dispersion term
should be included in the NLS equation, resulting in the
modified nonlinear Schrödinger(MNLS) equation [8–11]
which is related to the DNLS equation by a gaugelike trans-
formation[12]. For problems in optical fibers both VBC and
NVBC are of interest[7].

Like other integrable nonlinear equations, soliton dynam-
ics of the DNLS equation is of interest both in theoretical
and applied aspects. For the DNLS equation with VBC, one-
soliton solution has been found by inverse scattering trans-
form (IST) [13], N-soliton formulas have also been obtained
by various approaches[14–16].

Solutions for NVBC problems are much more compli-
cated than those for VBC problems. First, a parameter which

is a double-valued function of the eigenvalue usually ap-
pears. The IST usually has to be developed on the Riemann
sheets of the eigenvalue. Second, there possibly exists a
phase shift across the soliton which is relevant to soliton
parameters, complicating the derivation of the phase factor
of the soliton. In 1978, Kawata and Inoue developed an IST
for the DNLS equation with NVBC[17] where they consid-
ered the double-valued problem with Riemann sheets. But
they only obtained a complicated formula for modulus of the
one-soliton solution. With this formula they showed that the
solution, generally characterized by two parameters, is a
breather-type soliton called paired soliton. When the discrete
eigenvalue becomes real(for m=1) or purely imaginary(for
m=−1), the breather reduces to a one-parameter bright or
dark soliton, depending on its initial condition[17,18]. One
decade later, Mjølhus[4] solved the phase factor of the one-
soliton solution(for the case ofm=1) from formulas pro-
vided in Ref.[17] and obtained a rather complicated explicit
formula of the two-parameter soliton solution. This solution
showed the phase shift across the soliton is zero(or an inte-
ger times 2p). When the discrete eigenvalue becomes real it
reduces to a simple bright or dark soliton. Behavior of the
two-parameter soliton found in Ref.[4] was numerically
demonstrated in Ref.[5]. Recently, by using Bäcklund trans-
formation, Steudel[16] derived a formula forN-soliton so-
lution with VBC and NVBC but the explicit expression for
the two-parameter one-soliton solution with NVBC is still
not simpler than that in Ref.[4].

The physical situations giving rise to exactly solvable
equations are highly idealized. Small perturbations violating
their integrability, such as Landau damping[5] and density
fluctuation[19] for the DNLS equation, actually exist. Per-
turbation theories for solitons were developed to study ef-
fects of small perturbations on soliton transmissions(see,
e.g., Refs.[20–22]). For the DNLS solitons with VBC, a
direct perturbation theory was recently developed[23], in
which the eigenfunctions of the linearized equation around
soliton solution were constructed with the squared Jost solu-
tions obtained from the IST[13]. The linearization operator
and the way to construct its eigenfunctions with the squared
Jost solutions are the same for both VBC and NVBC. There-
fore, with results of IST for the DNLS equation with NVBC,
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in principle, the direct perturbation theory for the DNLS soli-
ton with VBC [23] can be extended to that with NVBC.
However, the IST and the soliton solution for the DNLS
equation with NVBC in present literature[4,17] seem too
complicated to be applied in developing a perturbation
theory.

The IST for the DNLS equation with NVBC do have a
space for further simplification. It has been shown that the
IST with NVBC can become single valued on the plane of an
appropriately chosen affine parameter[24]. Some compli-
cated IST problems were greatly simplified by this tech-
nique, yielding closed forms of soliton solutions(see, e.g.,
Refs. [25,26]). In this paper, we develop an IST for the
DNLS equation with NVBC by a similar technique. Because
the case ofm=1 can be obtained from the case ofm
=−1 by a transformationx→−x, we just consider the case of
m=−1. On the plane of the affine parameter, the IST is much
simpler than that in Ref.[17]. A much simpler two-parameter
one-soliton solution than that in Refs.[4,5] is obtained,
which can be easily verified numerically because of its
simple form. Although we could not analytically show our
solution is identical to that in Refs.[4,5], their numerical
behaviors can be shown to be in agreement. When the
boundary conditions vanish, both of our solution and that in
Ref. [4] approach the solution with VBC[13]. As the discrete
eigenvalue becomes purely imaginary, our solution degener-
ates to a one-parameter bright or dark soliton which is ana-
lytically equivalent to that in Ref.[4]. Again, the phase shift
across the soliton is shown to be zero, as a direct result of the
IST. In the last section, we map the obtained soliton solution
to that of the MNLS equation by a gaugelike transform.

II. JOST SOLUTIONS

The Lax equations of Eq.(1) (for m=−1) are

]xF = LF, s2ad

]tF = MF, s2bd

where the Lax pairs are

L = − il2s3 + lU, s3ad

M = − i2l4s3 + 2l3U − il2U2s3 + lU3 − ilUxs3. s3bd

Here

U = S 0 u

− ū 0
D , s4d

sisi =1,2,3d are Pauli matrices, the bar stands for complex
conjugate, andl is the time-independent eigenvalue. Without
loss of generality, the NVBC can be written as

u → re±i2a as x → ± `. s5d

Herer is real and we have assumed that there is a phase shift
of 4a across the soliton. In asymptotic solutions of Eq.(2a)
as uxu →`, a double-valued function ofl, z=sl2+r2d1/2 ap-
pears. Introducing an affine parameter[24] k satisfying

l = 1
2sk − r2k−1d, s6d

we have

z = 1
2sk + r2k−1d, s7d

which is a single-valued function ofk. Asymptotic solutions
of Eq. (2a) are

E±sx,kd = e±ias3sI − irk−1s1de−ilzxs3 asx → ± `, s8d

whereI is the unit matrix. As usual, we define Jost solutions
which have the following asymptotic behaviors

Csx,kd → E+sx,kd as x → `, s9ad

Fsx,kd → E−sx,kd as x → − `, s9bd

and the scattering coefficients by

Fsx,kd = Csx,kdTskd, s10d

where

Csx,kd = fc̃sx,kd,csx,kdg, s11ad

Fsx,kd = ffsx,kd,f̃sx,kdg, s11bd

Tskd = Saskd − b̃skd
bskd ãskd

D . s12d

Equation(10) yields

askd = detsf,cd/det C, s13ad

ãskd = detsc̃,f̃d/det C, s13bd

and

det F = detC det T. s14d

From Eq. (2), we have]xdet Csx,kd=0 and ]xdet Fsx,kd
=0, Therefore

det Csx,kd = detE+sx,kd = 1 +r2k−2, s15ad

det Fsx,kd = detE−sx,kd = 1 +r2k−2, s15bd

det Tskd = 1. s16d

III. SYMMETRIES ON THE k PLANE

The key to simplify the IST is to find symmetries of the
Jost solutions and the scattering coefficients on thek plane. If
one finds thatLsx,kd is unchanged upon a transformation, for
example,

s2Lsx,k̄ds2 = Lsx,kd, s17d

then, if Fsx,kd is a solution of Eq.(2a), we have
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]xs2Fsx,k̄ds2 = Lsx,kds2Fsx,k̄ds2. s18d

Thus,s2Fsx, k̄ds2 or s2Fsx, k̄ds2s1 is also a solution of Eq.
(2a), corresponding to the same eigenvaluek. They only dif-
fer in a constant factor. IfFsx,kd is a Jost solution, this
constant factor can be determined by its definite asymptotic
behavior. We find

s2E
±sx,k̄ds2 = E±sx,kd, s19d

hence

s2Csx,k̄ds2 = Csx,kd, s2Fsx,k̄ds2 = Fsx,kd, s20d

and, with Eq.(10), we get

s2Tsk̄ds2 = Tskd, s21d

that is,

c̃sx,kd = is2csx,k̄d, f̃sx,kd = − is2fsx,k̄d, s22d

ãskd = ask̄d. s23d

The second symmetric relation is uponk→−k. We find

s3Lsx,− kds3 = Lsx,kd, s24d

s3E
±sx,− kds3 = E±sx,kd. s25d

Therefore

s3Csx,− kds3 = Csx,kd, s3Fsx,− kds3 = Fsx,kd,

s26d

s3Ts− kds3 = Tskd. s27d

That is,

cs− kd = − s3cskd, c̃s− kd = s3c̃skd, s28ad

fs− kd = s3fskd, f̃s− kd = − s3f̃skd, s28bd

as− kd = askd. s29d

The third symmetric relation is uponk→r2k−1. We find

s3Lsx,r2k−1ds3 = Lsx,kd, s30d

s3E
±sx,r2k−1ds3s1 = ir−1kE±sx,kd. s31d

Therefore

Csx,r2k−1d = r−1ks3Csx,kds2, Fsx,r2k−1d

= r−1ks3Fsx,kds2, s32d

Tsr2k−1d = s2Tskds2 = Tsk̄d. s33d

That is,

c̃sx,r2k−1d = ir−1ks3csx,kd, f̃sx,r2k−1d = − ir−1ks3fsx,kd,

s34d

asr2k−1d = ãskd = ask̄d. s35d

Thus, as shown in Fig. 1, ifkn1=kn is a simple zero ofaskd in
the first quadrant, outside ther circle, kn2=−kn is also a
simple zero in the third quadrant outside ther circle, kn3

=r2k̄n
−1 is also a simple zero in the first quadrant inside ther

circle, andkn4=−r2k̄n
−1 is also a simple zero in the fourth

quadrant inside ther circle. Correspondingly, k̄njs j
=1,2,3,4d are zeros ofãskd. Equation(13a) yields

fsx,knjd = bnjcsx,knjd, f̃sx,k̄njd = b̃njc̃sx,k̄njd. s36d

Equation(20) yields

b̃nj = − b̄nj. s37d

Because of Eqs.(28) and (34), we get

bn2 = − bn, bn3 = b̄n, bn4 = − b̄n. s38d

Equations(29) and (35) yield

ȧskn2d = − ȧsknd, ȧskn3d = − r−2k̄n
2ȧsknd, ȧskn4d

= r−2k̄n
2ȧsknd. s39d

Letting

cnj =
bnj

ȧsknjd
, s40d

we have

cn2 = cn1 = cn, s41ad

cn3 = cn4 = − r2k̄n
−2c̄n. s41bd

FIG. 1. Integration path for Eq.(55). The radius of the dashed
circle is r. The radius of the large solid circle approaches`.
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IV. ASYMPTOTIC BEHAVIORS ON THE k PLANE

In the first and the third quadrants ofk plane, Imslzd
ù0, csx,kd, fsx,kd, andaskd are analytic. In the second and

the fourth quadrants ofk plane, Imslzdø0, c̃sx,kd, f̃sx,kd,
andãskd are analytic[17]. As usual, asymptotic behaviors of
Jost solutions asuku →` or k→0 can be found from Eq.
(2a). Asymptotic behaviors ofaskd and ãskd are then ob-
tained from Eq.(13a).

As uku →`, we have

csx,kde−ilzx → S− ik−1u

1
Deish+−ad + Osuku−2d, s42ad

fsx,kdeilzx → S 1

− ik−1ū
Deish−−ad + Osuku−2d, s42bd

and, by using Eq.(13a),

askd → expsih − i2ad. s43d

Here

h± = ±
1

2
E

x

±`

sr2 − uuu2ddx, s44d

h = h+ + h− =
1

2
E

−`

+`

sr2 − uuu2ddx. s45d

As k→0, we have

csx,kde−ilzx → S− irk−1

r−1ū
De−ish+−ad + Os1d, s46ad

fsx,kdeilzx → S r−1u

− irk−1De−ish−−ad + Os1d, s46bd

and, by using Eq.(13a), we have

askd → expf− ish − 2adg. s47d

With analytic and asymptotic behaviors ofaskd and ãskd,
usual IST procedure yields

askd = expfish

− 2adgp
n=1

N

p
j=1

4
k − knj

k − k̄nj

expF 1

2pi
E

G

lnuask8du2

k8 − k
dk8G .

s48d

HereG is the path consisting of lines fromi` to 0, from 0 to
`, from −i` to 0, and from 0 to −̀ .

As k→0, Eq. (48) becomes

askd → expFish − 2ad + i8o
n

bnG, bn = argsknd.

s49d

Comparing Eq.(49) with Eq. (47), we get a relation between
the phase shift and the soliton parameters:

4a = 2h + 8o
n=1

N

bn. s50d

V. ZAKHAROV-SHABAT INVERSE SCATTERING
EQUATION

For the case whenaskd only has simple zeros, we define

Qsx,kd

=Ha−1skdfsx,kd

c̃sx,kd

in the first and third quadrants ofk

in the second and fourth quadrants ofk.

s51d

With Eqs.(42), (46), and(22), we get

Qsx,kdeilzx → e−ish+−adS1

0
D as uku → ` s52d

and

Qsx,kdeilzx → eish+−adS r−1u

− irk−1D as uku → 0. s53d

Thus, besides the 4N poles correspond to zeros ofaskd,
Qsx,kd has an extra pole atk=0. While across the real or
imaginary axes,Qsx,kd has a jump,

a−1skdfsx,kd − c̃sx,kd = rskdcsx,kd, s54d

whererskd=bskd /askd is the reflection coefficient. Fork in-
terior to the closed path shown in Fig. 1, Cauchy’s formula
yields

Qsx,kdeilzx − e−ish+−adS1

0
D

=
1

i2p
r

Qsx,k8deil8z8x − e−ish+−adS1

0
D

k8 − k
dk8 = Rsx,kd

+ Jsx,kd, s55d

where

Rsx,kd = − o
n=1

N

o
j=1

4

ResFQsx,k8deil8z8x

sk8 − kd
,k8 = knjG

− ResFQsx,k8deil8z8x

sk8 − kd
,k8 = 0G

= o
n=1

N

o
j=1

4
1

sk − knjd
cnjcsx,knjdeilnjznjx − irk−1eish+−adS0

1
D

s56d

and

Jsx,kd =
1

i2p
E

G

rsk8dcsx,k8deil8z8x

k8 − k
dk8. s57d

Hence
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Qsx,kdeilzx = S e−ish+−ad

− irk−1eish+−ad D
+ o

n=1

N

o
j=1

4
1

k − knj
cnjcsx,knjdeilnjznjx + Jsx,kd.

s58d

For k in second or fourth quadrants, we have the Zakharov-
Shabat inverse scattering equation[27]

c̃sx,kdeilzx = S e−ish+−ad

− irk−1eish+−ad D
+ o

n=1

N

o
j=1

4
1

k − knj
cnjcsx,knjdeilnjznjx + Jsx,kd.

s59d

For the case of reflectionless potential,Jsx,kd=0, we can
find Jost solutions from Eq.(59). Soliton solutions can be
found from Eq.(42) or Eq. (46), e.g., Eqs.(46a) and (22)
yield

usxd = re−ish+−ad limc̃1sx,kdeilzx = re−i2sh+−ad

− re−ish+−ado
n=1

N

o
j=1

4
cnj

knj
c1sx,knjdeilnjznjx.

Considering Eqs.(28), Eq. (34) and (41), we get

usxd = re−i2sh+−ad − 2re−ish+−ado
n=1

N Fcn

kn
c1sx,kndeilnznx

+ i
c̄n

r
c2sx,knde−il̄nz̄nxG . s60d

In order that the Jost solutions obtained from the first Lax
equation satisfy the second Lax equation, they must be mul-
tiplied by a t-dependent factor as

c̃sx,k,td → hst,kdc̃sx,kd, csx,k,td → h−1st,kdcsx,kd,

fsx,k,td → hst,kdfsx,kd, f̃sx,k,td → h−1st,kdf̃sx,kd.

With standard IST techniques, we find

hst,kd = expf− ilzs2l2 − r2dtg, s61d

and thet dependence of all scattering data,

ask,td = ask,0d, s62d

bsk,td = bsk,0dexpfi2lzs2l2 − r2dtg, s63d

bnjstd = bnjs0dexpfi2lnjznjs2lnj
2 − r2dtg. s64d

Therefore

cnjstd = cnjs0dexpfi2lnjznjs2lnj
2 − r2dtg. s65d

VI. ONE-SOLITON SOLUTION

For the case ofN=1, with Eqs.(28), (34), and (41), Eq.
(59) becomes

c̃sx,kdeilzx = S e−ish+−ad

− irk−1eish+−ad D
+

2

k2 − k1
2Sk1 0

0 k
Dc1csx,k1deil1z1x

+
i2rk̄1

−1

sk2 − r4k̄1
−2d
S0 r2k̄1

−1

k 0
Dc̄1csx,k1de−il̄1z̄1x.

s66d

At k= k̄11= k̄1, with Eq. (22), we have

c1sx,k1de−il1z1x = − irk1
−1e−ish+−ad −

2k1

k1
2 − k̄2

1
c̄1c2sx,k1de−il̄1z̄1x

+
ir

2l1z1
c1c1sx,k1deil1z1x, s67ad

c2sx,k1deil̄1z̄1x = e−ish+−ad −
2k1

k1
2 − k̄2

1
c1c1sx,k1deil1z1x

+
ir3k̄1

−2

2l̄1z̄1

c̄1c2sx,k1de−il̄1z̄1x. s67bd

It is easy to verify that forj =2,3,4, wejust have the same
equations or their complex conjugate. Letting

k1 = reg1+ib1, g1 ù 0, 0, b1 , p/2, s68d

2l1z1 = m + in, s69d

m = r2 sinhs2g1dcoss2b1d, n = r2 coshs2g1dsins2b1d,

s70d

c1s0d = − i
2l1z1

k̄1

sins2b1denx0+iw0, s71d

solving Eq.(67) and substituting its solutions into Eq.(60),
we get

usx,td = re−is2h+−hd N

D
, s72d

where

N = eu+i3b1 + sinh2s2g1de−4g1e−u−i3b1 + sins2b1deg1−iw

− sins2b1de−5g1+iw, s73d

D = eu−ib1 + sinh2s2g1de−4g1e−u+ib1 + sins2b1de−3g1−iw

− sins2b1de−g1+iw, s74d

u = nsx − vt − x0d, w = msx − wtd + w0, s75d
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v = 2r2 − r2 coss2b1d
coshs4g1d
coshs2g1d

, s76d

w = 2r2 − r2 coshs2g1d
coss4b1d
coss2b1d

. s77d

In order to determineh+sxd with Eq. (44), we find a useful
relation

D1
dD2

dx
− D2

dD1

dx
=

r2

4
suDu2 − uNu2d, s78d

whereD1=ReD, D2=Im D. With this relation, we have

h+sxd = 2E
x

` 1

1 + sD2/D1d2

d

dx
sD2/D1d = − i ulnsD/D̄dux

`

= i ln
D

D̄
− 2b1 s79d

and

h = h+s− `d = − 4b1, s80d

a =
h

2
+ 2b1 = 0. s81d

This means there is no phase shift across the soliton. There-
fore we have the one-soliton solution

u = r
ND

D̄2
. s82d

In general casel1 is complex. There are two soliton param-
etersg1 andb1 characterizing its behavior, and the solution
is usually called two-parameter soliton in the literature[5]. It
is actually a breather with a period,

Tb =
2p

muv − wu
=

2p

r2 tanhs2g1dfcosh2s2g1d + cos2s2b1dg
.

s83d

We have numerically verified that the breather, Eq.(82), re-
ally satisfies Eq.(1) sm=−1d. Its time evolution in three pe-
riods is shown in Fig. 2, in agreement with that numerically
exhibited in Ref.[5].

Equation(82) includes the VBC as a special case. Asr
→0, g1→ +`, keepingreg1= uk1u =2ul1u finite, we have

rN → uk1usins2b1de−iw, s84d

D → eu−ib1 + 1
4e−u+ib1. s85d

Redefiningx0 by absorbing −ln 2/n into x0, we get the one-
soliton solution with VBC,

u =
4ul1usins2b1de−iw

seu+ib1 + e−u−ib1d2seu−ib1 + e−u+ib1d, s86d

which is equivalent to that in Ref.[13].

FIG. 2. Time evolution of the breather, Eq.(82), in three periods, wherer=2, g1=0.08,b1=p /10, x0=0, andw0=3p /2.
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For a special case whenk1 approaches ther circle, i.e.,l1
becomes purely imaginary,g1→0, m→0, w→w0. There is
only one soliton parameterb1 characterizing the soliton. It is
thus called one-parameter soliton[5]. If w0Þnp (n is an
integer), we have

usx,td = rF1 −
i4e cos2 b1

eu+ib1 − e−u−ib1 + i2e
G , s87d

where x0 has been redefined by absorbing
lnf2 sins2b1d usin w0u g /n into x0, e=sgnssin w0d. The casee
=−1s1d corresponds to bright(dark) soliton, equivalent to
those obtained in Ref.[4].

VII. ONE-SOLITON SOLUTION FOR THE MNLS
EQUATION WITH NVBC

The MNLS equation[8] is

iqz +
s

2
qtt + issuqu2qdt + uqu2q = 0, s88d

where s= ±1, s=−1s1d corresponds to normal(abnormal)
group velocity dispersion(GVD) region, the third term on
the left is the nonlinear dispersion term, whiles represents its
relative magnitude[7]. It can be verified that upon a gauge-
like transformation

qsz,td = QsZ,Tdeis1/4ds−4Z+iss/2ds−2T, s89d

in which

t =
s

2
s−1T +

1

2
s−3Z, z=

s

2
s−2Z, s90d

the MNLS equation, Eq.(88), is transformed to the DNLS
equation

iQZ + QTT + isuQu2QdT = 0. s91d

From one-soliton solution of the DNLS equation obtained in
the preceding section, we have one-soliton solution of the
MNLS equation with NVBC,

qsz,td = r
ND

D̄2
e−iss/2ds−2z+is−1t. s92d

Here dependence ofN andD on u andw are the same as Eqs.
(73) and (74), while

u = 2ssnft − ssv + ss−1dz− t0g, s93d

w = 2ssmft − ssw+ ss−1dzg + w0. s94d

As g1→0, we also get

qsz,td = rF1 −
i4e cos2 b1

eu+ib1 − e−u−ib1 + i2e
Ge−iss/2ds−2z+is−1t,

s95d

Therefore, when effects of the nonlinear dispersion are sig-
nificant enough, with background wave, single-mode fibers
may possibly support breathers, bright solitons, and dark
solitons, both in the regions of normal and abnormal GVD.
Here, the MNLS dark soliton is very different from its NLS
counterpart. The MNLS dark soliton not only exists in nor-
mal but also in abnormal GVD region while the NLS dark
soliton only exists in normal GVD region. There is no phase
shift across the MNLS dark soliton but there is a phase shift
across the NLS dark soliton which is relevant to soliton pa-
rameters(see, e.g., Ref.[28]).

VIII. SUMMARY AND DISCUSSION

In this paper, by introducing an affine parameter, a simple
IST for the DNLS equation with NVBC is developed, yield-
ing a much simpler one-soliton solution than that in the lit-
erature. We show that the DNLS equation with NVBC sup-
ports rich soliton dynamics. It supports breathers which look
like bounded pairs of bright and dark solitons, as well as
unpaired bright and dark solitons. Our solution includes the
case of VBC as a special case. As the solution is mapped to
that for the MNLS equation with NVBC, it predicts some
solitons in optical fibers in sub-picosecond regime with
background waves, especially, a completely different type of
dark solitons which has no phase shift across itself and may
exist not only in normal GVD region but also in abnormal
GVD region. The IST technique developed in this paper
make it possible to get multisoliton solutions for the DNLS/
MNLS equation. When multisoliton solutions are obtained,
they will demonstrate interesting soliton dynamics such as
collisions between bright and dark solitons and collisions
between breather and bright or dark solitons. The IST tech-
nique also provides a foundation for understanding effects of
small perturbations on the DNLS/MNLS solitons with
NVBC. There seems no special difficulty to extend the direct
perturbation theory for the DNLS/MNLS solitons with VBC
[23] to that with NVBC.
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